

COMPARATIVE ANALYSIS OF MODULATION TECHNIQUES FOR CHB MULTILEVEL INVERTERS

Sarika Anasane, Anand Bhaskar

E-Mail Id: sarika.kuhikar@spsu.ac.in

Sir Padampat Singhania University, Udaipur, Rajasthan, India

Abstract - A multilevel inverter (MLI) is a power electronic device that is used for high-power and high-voltage applications and has many advantages like reduced total harmonic distortion (THD) and high-power quality waveform. Hence, the size and bulkiness of passive filters can be reduced. The output voltage of the multi-level inverter is in a staircase waveform. Therefore, the voltage stress of the switching device is lower, and the total harmonic distortion (THD) is also lower than that of the other types of inverters. As the number of DC voltage sources increases in input side, the sinusoidal like waveform can be generated at the output of inverter. In this paper, a CHB 7-level inverter is discussed using two modulation techniques. In the present work, the Sinusoidal Pulse Width Modulation (SPWM) and nearest level control (NLC) method are used. The SPWM scheme provides the best harmonic profile in high frequency switching. The nearest level control method is used in low switching frequency, which leads to reduction of switching losses. The model is simulated using SPWM and nearest level modulation techniques and the effect of the harmonic spectrum is analyzed.

Keywords: Cascaded H-bridge, 7-Level Inverter, Nearest Level Control, Sinusoidal PWM.

1. INTRODUCTION

The power electronics device which converts DC power to AC power at required output voltage and frequency level is known as inverter. [1] Multilevel inverters are used for high power and high voltage applications and have many advantages like high power quality waveform, reduced total harmonic distortion (THD). [2] Hence, the size and bulkiness of passive filters can be reduced. These inverters generate a stepped voltage waveform by proper arrangement of semiconductor devices and number of dc voltage sources as an input. [3]

The multilevel inverters are primarily classified as Flying capacitor inverter, Diode clamped and Cascaded H-Bridge multilevel inverter. [4] Cascaded H-Bridge (CHB) multilevel inverter needs a number of isolated dc supplies, each of which feeds an individual H-bridge power cell. [5] The number of H-bridge cells in a CHB inverter is mainly decided by the inverter operating voltage, harmonic requirements, and manufacturing cost. [6] The output voltage of the multi-level inverter is in a staircase waveform.

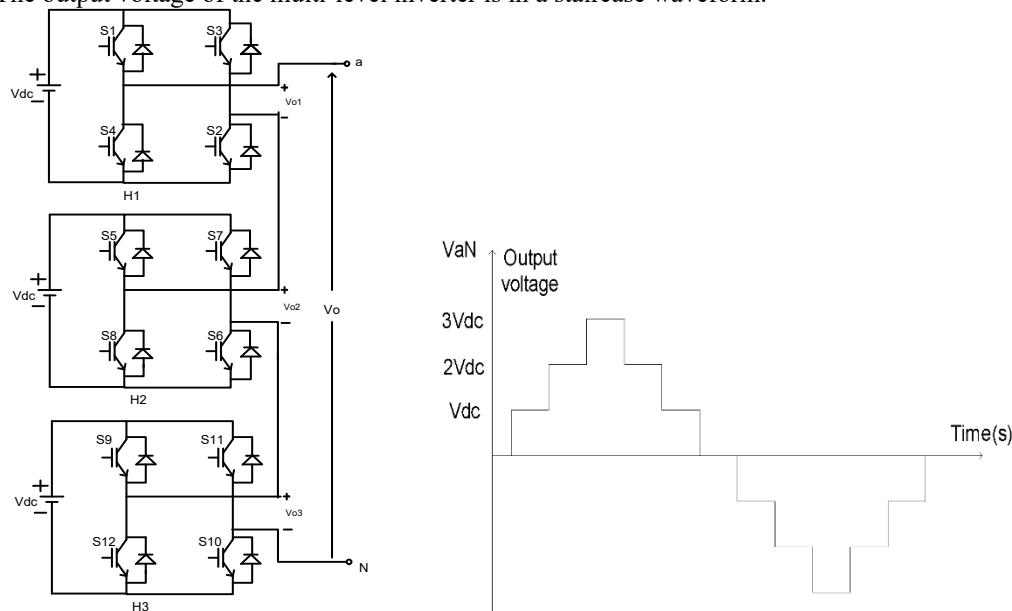


Fig. 1.1 Per Phase Diagram of Conventional CHB 7-level Inverter

Therefore, the voltage stress of the switching device is lower, and the total harmonic distortion (THD) is also lower than that of the other types of inverters [7]. As the number of DC voltage sources increases in input side, the sinusoidal like waveform can be generated at the output of inverter [8]. Increasing the number of levels of the multi-level inverter (MLI) provides more steps for approximating the desired output waveform and reduced

harmonic distortion and dv/dt stress [9]

Conventional cascaded multilevel inverter consists of a number of single-phase H-bridge inverters. The CHB inverter with seven to eleven voltage levels has been widely used in high-power and medium-voltage applications. [10] IGBTs are exclusively used as switching devices in these inverters.

A stepped output voltage and current can be obtained in a cascaded multilevel inverter by cascading many H-bridge inverters. In conventional CHB7-level Inverter, three H-bridge inverters are to be cascaded to get a 7-level output. [11]

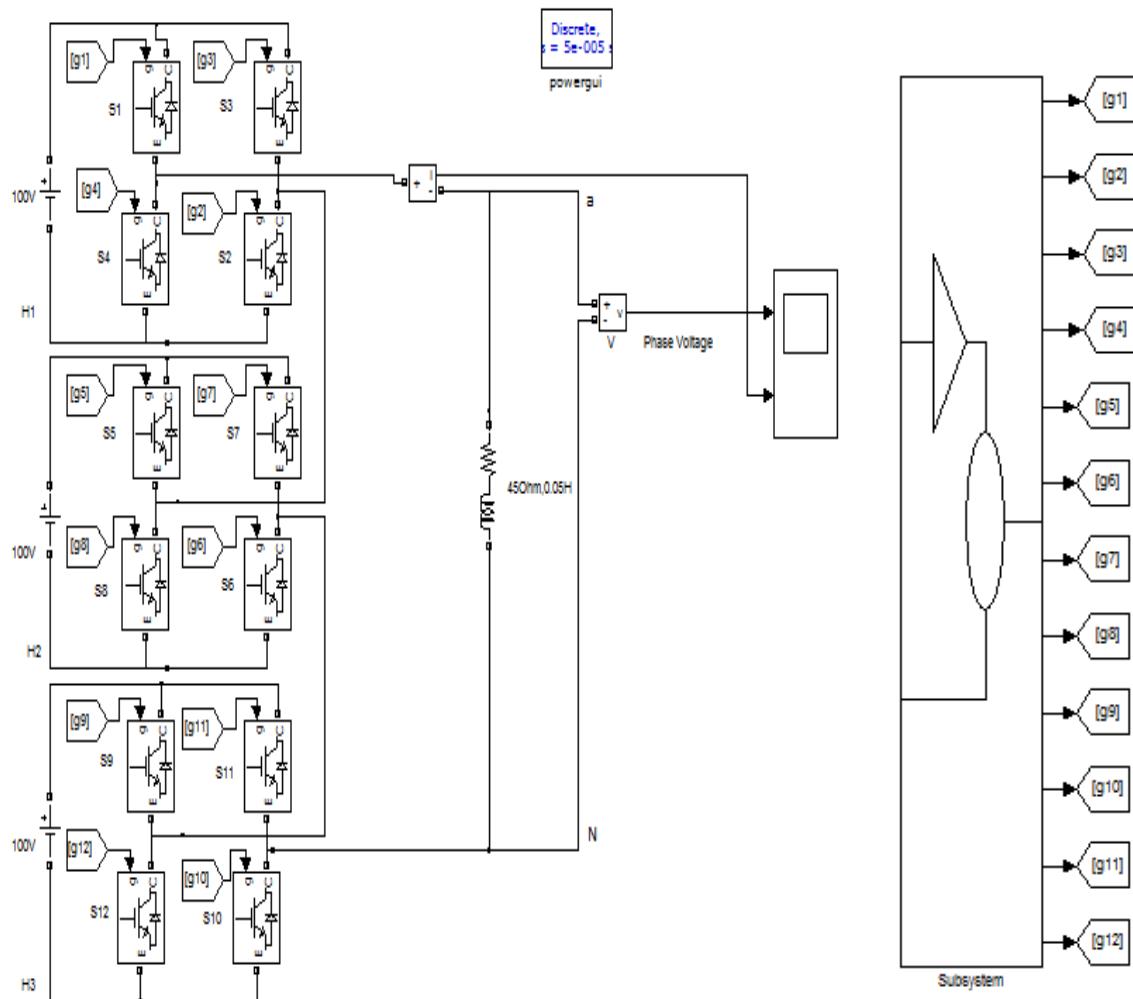
From figure 1, when switches S1, S2, S5, S6, S9, S10 conduct, the output voltage of the H-bridge cells H1, H2 and H3 is $V_{o1}=V_{o2}=V_{o3}=V_{dc}$ and the resultant inverter phase voltage is $V_{aN}=V_o=V_{o1}+V_{o2}+V_{o3}=3V_{dc}$, which is the voltage at the inverter terminal 'a' with respect to the inverter neutral N. Similarly, with S3, S4, S7, S8, S11, S12 switched on, $V_{aN} = -3V_{dc}$. The other five voltage levels are $2V_{dc}$, V_{dc} , 0 , $-V_{dc}$, $-2V_{dc}$ which correspond to various switching states given in table 1 [12].

Table-1.1 Seven- level CHB Inverter (Single Phase) Switching States and Corresponding Output Voltages

State	Device Switching States												Inverter Terminal Voltage (V_{aN})
	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12	
1	1	1	0	0	0	1	0	1	0	1	0	1	+ V_{dc}
2	1	1	0	0	1	1	0	0	0	1	0	1	+ $2V_{dc}$
3	1	1	0	0	1	1	0	0	1	1	0	0	+ $3V_{dc}$
4	1	0	1	0	1	0	1	0	1	0	1	0	0
	0	1	0	1	0	1	0	1	0	1	0	1	
5	0	0	1	1	0	1	0	1	0	1	0	1	- V_{dc}
6	0	0	1	1	0	0	1	1	0	1	0	1	- $2V_{dc}$
7	0	0	1	1	0	0	1	1	0	0	1	1	- $3V_{dc}$

2. METHODOLOGY

The nearest level control technique is used in the proposed work for the pulse generation for both 12 switch and 6 switch inverter configurations. This control method tends to generate a staircase voltage which minimizes the error with respect to the reference voltage and is known as nearest level (or round) control method [13]. In this method, the sinusoidal reference voltage is compared with the available dc voltage levels and the level is chosen that is nearest to the reference voltage [14]. Consequently, the proper switches are turned on to generate the desired voltage level. The output voltage (v_o) will be staircase voltage with minimum possible error with respect to the reference voltage. The circuits are modeled and simulated using MATLAB/Simulink.


Level shifting scheme is further divided into three schemes - Phase Disposition (PD), Phase Opposition Disposition (POD), and Alternate Phase Opposition Disposition (APOS). Phase disposition involves all the carriers that are in phase. All the carrier waves above zero reference are in phase while the ones below zero are 180 degrees out of phase in case of phase opposition disposition. Each carrier is 180 degrees in phase difference with its neighboring carrier in alternate phase opposition disposition [15]. While using level shifting scheme, an ' m ' level inverter requires ' $m-1$ ' triangular carrier waves, all having the same frequency and amplitude. The $(m-1)$ triangular carriers are vertically disposed such that the bands they occupy are contiguous. The frequency modulation index is given by $mf = fc/fm$, where fm is modulating frequency and fc is carrier waves frequency. Whereas the amplitude modulation index is defined as $ma = V_m/V_c(m-1)$, for $0 \leq ma \leq 1$ Where V_m is the peak value of the modulating wave and V_c is the peak value of each carrier wave. For seven-level inverter, using SPWM technique, six carrier waveforms are arranged so that every carrier is in phase. Three of them are applied across the positive half cycle of the modulating signal, remaining three of them are applied across the negative half cycle of the modulating signal. From these signals twelve PWM signals are generated and then given to the twelve switches of a leg. [16]

3. SIMULATION RESULTS

The power circuit and control circuit of seven-level inverter is simulated using carrier based PWM technique, i.e. SPWM technique and fundamental frequency control method i.e. nearest level control (NLC) method. Harmonic spectrum analysis is done using FFT window using MATLAB/Simulink.

Figure 3.1 shows simulation model of one phase-leg of a seven-level CHB inverter. As shown in figure 2, when switches S1, S2, S5, S6, S9, S10 conduct, the output voltage of the H-bridge cells $H1$, $H2$ and $H3$ is

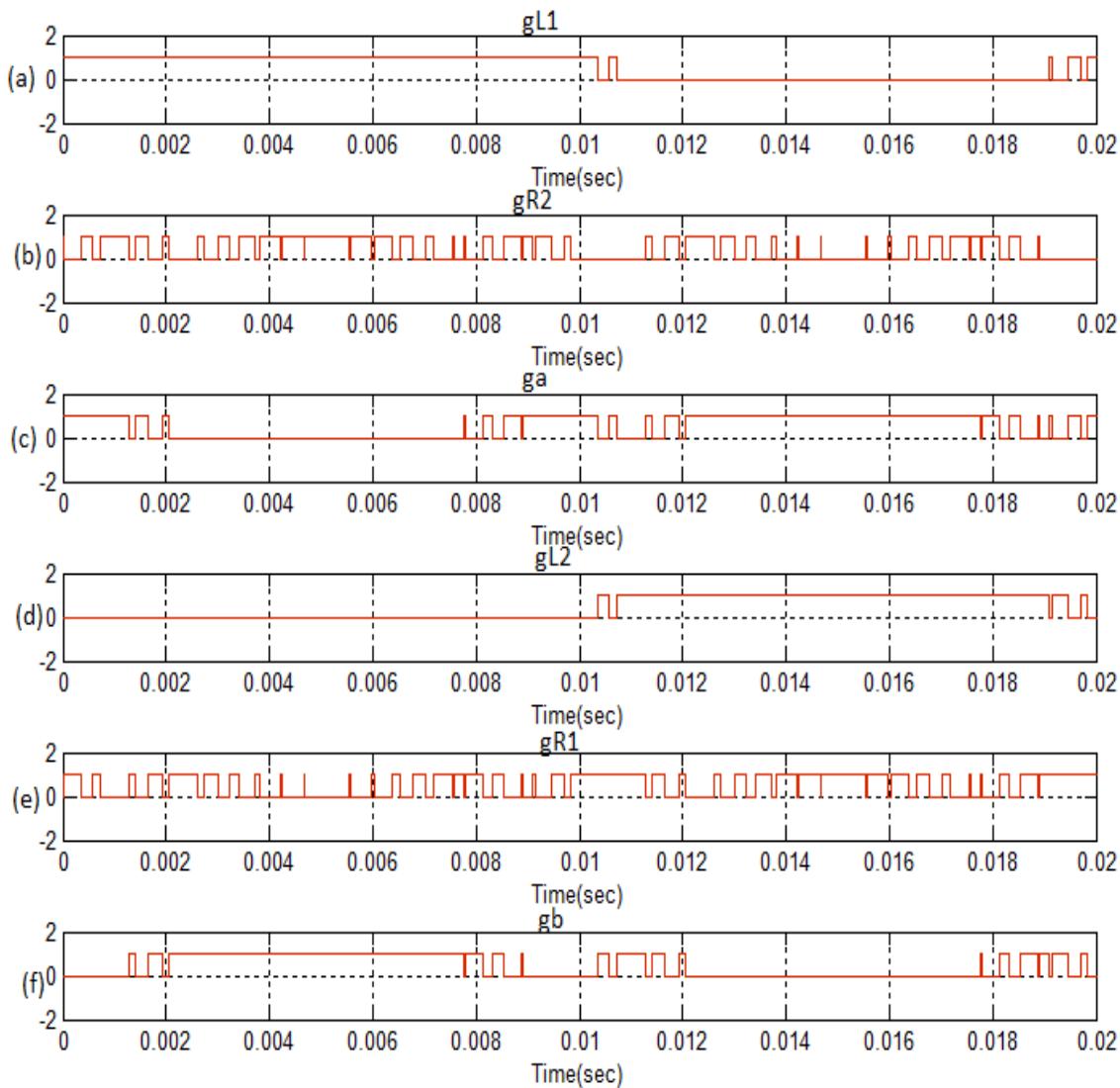
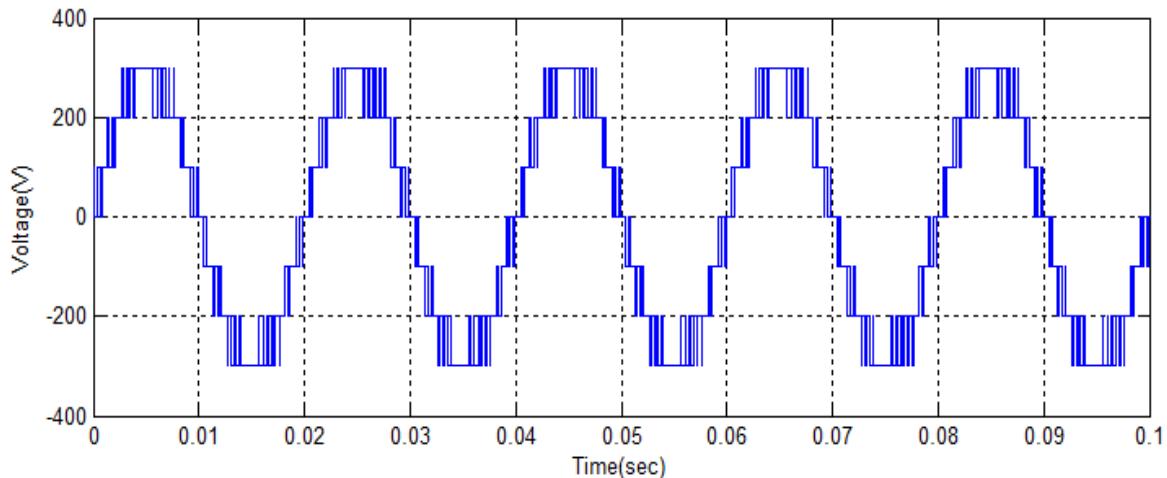

$V_{o1}=V_{o2}=V_{o3}=V_{dc}$ and the resultant inverter output voltage is $V_{aN}=V_o=V_{o1}+V_{o2}+V_{o3} = 3V_{dc}$, which is the voltage at the inverter terminal a with respect to the inverter neutral N . Similarly, with $S_3, S_4, S_7, S_8, S_{11}, S_{12}$ switched on, $V_{aN} = -3V_{dc}$. Switching Pattern Produced using SPWM scheme is shown in figure 3.1.

Fig. 3.1 Simulation Model of Seven-level CHB Inverter (Single Phase)


Table-3.1 Simulation Parameters for Seven- level CHB Inverter

DC Bus Voltage (Vdc)	100 V
Carrier frequency	2.250 KHz
Fundamental frequency	50Hz
Control technique	SPWM
Load	$R=45 \text{ Ohm}, L=0.05\text{H}$

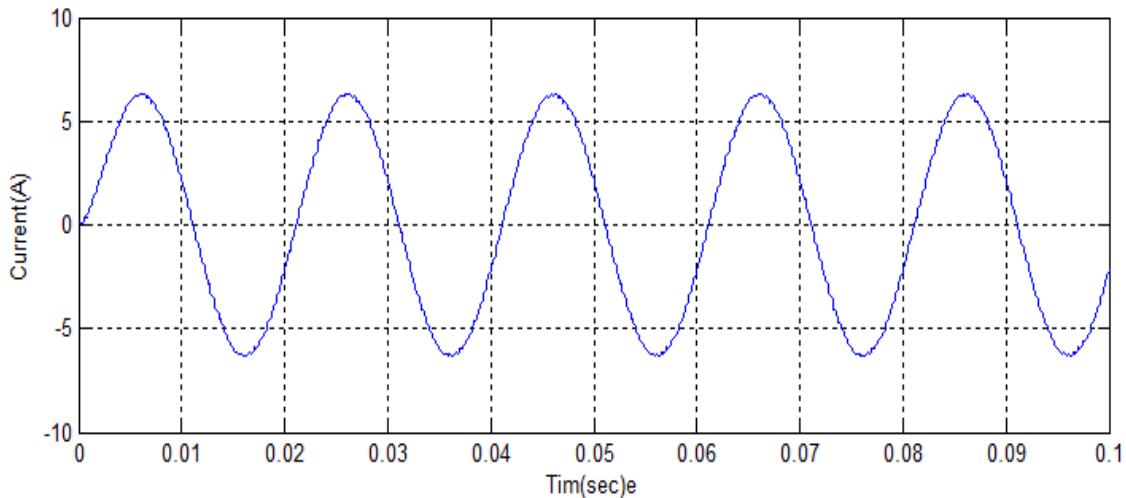


Fig. 3.2 Switching Pattern Produced using SPWM scheme

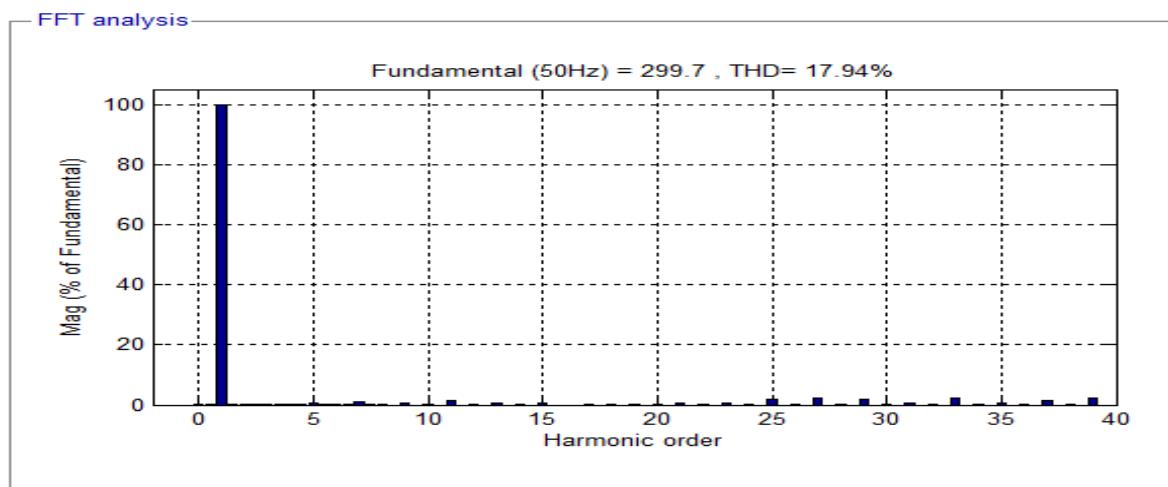
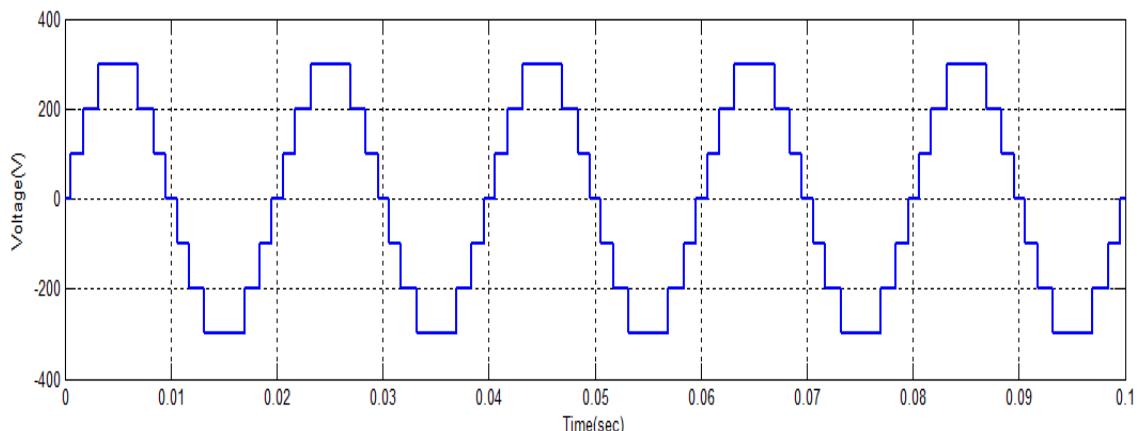
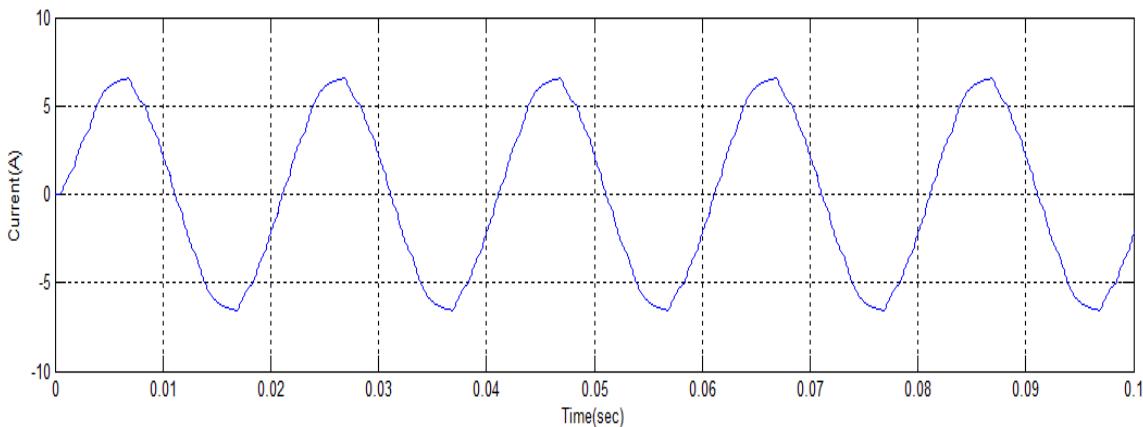

Simulation results of One Phase Leg of Seven-level CHB Inverter using SPWM technique with modulation index (ma) of 1 are as given below:

Fig. 3.3 Output Phase Voltage Waveform of Seven-level CHB Inverter using SPWM


Fig. 3.4 Output Phase Current Waveform of Seven-level CHB Inverter using SPWM


Fig. 3.5 FFT Analysis of Seven-level Cascaded H-bridge Inverter using SPWM Technique with $ma=1$

Simulation study of seven-level CHB Inverter using SPWM technique has been carried out. Figure 3.3 shows the output phase voltage waveform and figure 3.4 represents the output current waveform of seven-level CHB inverter. From figure 3.5, which represents the harmonic spectrum for output phase voltage and output current, it is observed that the total harmonic distortion (THD) for the output phase voltage is 17.94%

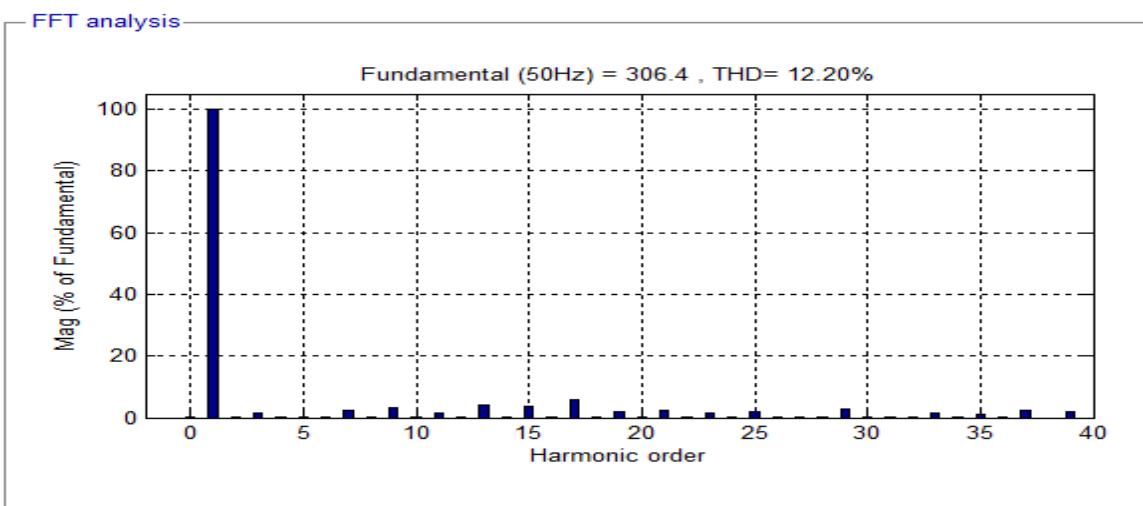

Simulation results of One Phase Leg of Seven-level CHB Inverter using NLC technique with modulation index (ma) of 1 are as given below:

Fig. 3.6 Output Voltage Waveform of Conventional CHB 7-level Inverter using NLC

Fig. 3.7 Output Current Waveform of Conventional CHB 7-level Inverter using NLC

Fig. 3.8 Harmonic Spectrum for Output Phase voltage of Seven-level CHB Inverter using NLC

Simulation study of seven-level CHB Inverter using NLC technique has been carried out. Figure 3.6 shows the output phase voltage waveform and figure 3.7 shows the output current waveform of seven-level CHB inverter. From figure 3.8, which represents the harmonic spectrum for output phase voltage and output current, it is observed that the total harmonic distortion (THD) for the output phase voltage is 12.20%

Table-3.2 Comparison of Two Configurations of 7-Level Inverters

Conventional CHB 7-level inverter	SPWM	NLC
THD	17.94	12.20
Fundamental Voltage(V)	299.7	306.4

CONCLUSION

A comparison of Nearest Level Control (NLC) and Sinusoidal Pulse Width Modulation (SPWM) for a seven-level Cascaded H-Bridge (CHB) inverter shows that both techniques successfully produce high-quality stepped output waveforms. However, simulation results demonstrate that NLC delivers a slightly higher fundamental voltage and achieves a lower total harmonic distortion (THD) of 12.20% compared to 17.94% with SPWM. While NLC is more effective at low switching frequencies because of lower switching losses, SPWM performs better at high switching frequencies. Therefore, the requirements of the particular application should guide the choice of modulation technique, which should balance efficiency, switching frequency, and harmonic performance.

ACKNOWLEDGEMENT

The authors express their sincere gratitude to Sir Padampat Singhania University, Udaipur, for providing the necessary resources and support to carry out this research. Special thanks are extended to colleagues and faculty members for their valuable guidance and encouragement throughout the study.

REFERENCES

- [1] T. R. Sumithira and A. Nirmal Kumar, "Elimination of harmonics in multilevel inverters connected to solar photovoltaic systems using ANFIS: An experimental case study," *J. Appl. Res. Technol.*, vol. 11, no. 1, pp. 124–132, Feb. 2013, doi: 10.1016/S1665-6423(13)71518-2.
- [2] P. Kala, V. Jately, A. Sharma, J. Joshi, H. Kotb, and B. Azzopardi, "GWO-NR hybrid method for selective harmonic elimination in multilevel inverter for distributed energy systems," *IEEE Access*, vol. 12, pp. 58965–58977, 2024, doi: 10.1109/ACCESS.2024.3391482.
- [3] I. Sajid, A. Sarwar, M. Tariq, F. I. Bakhsh, and M. A. Abido, "Runge–Kutta optimization-based selective harmonic elimination in an H-bridge multilevel inverter," *IET Power Electron.*, vol. 16, no. 10, pp. 1699–1712, Aug. 2023, doi: 10.1049/pe12.12493.
- [4] Y. Gopal, D. Birla, and M. Lalwani, "Selected harmonic elimination for cascaded multilevel inverter based on photovoltaic with fuzzy logic control maximum power point tracking technique," *Technologies*, vol. 6, no. 3, p. 62, Jun. 2018, doi: 10.3390/technologies6030062.
- [5] S. Sudha Letha, T. Thakur, and J. Kumar, "Harmonic elimination in a solar powered cascaded multilevel inverter using genetic algorithm and differential evolution optimization techniques," *ASME J. Sol. Energy Eng.*, vol. 138, no. 2, p. 021006, Apr. 2016, doi: 10.1115/1.4032488.
- [6] M. Vivert et al., "Real-time adaptive selective harmonic elimination for cascaded full-bridge multilevel inverter," *Energies*, vol. 15, no. 9, p. 2995, Apr. 2022, doi: 10.3390/en15092995.
- [7] R. A. Khan et al., "Archimedes optimization algorithm based selective harmonic elimination in a cascaded H-bridge multilevel inverter," *Sustainability*, vol. 14, no. 1, p. 310, Dec. 2021, doi: 10.3390/su14010310.
- [8] U. T. Shami et al., "Selective harmonic elimination notch angle calculation using THD and ZHF benchmarks for cascaded multilevel inverters," *IEEE Access*, vol. 11, pp. 104068–104081, 2023, doi: 10.1109/ACCESS.2023.3317947.
- [9] M. Rasheed et al., "Validation of a three-phase cascaded multilevel inverter based on Newton Raphson (NR)," *Indian J. Sci. Technol.*, vol. 9, no. 20, pp. 1–8, May 2016, doi: 10.17485/ijst/2016/v9i20/92207.
- [10] C. Wang et al., "A comprehensive review of solving selective harmonic elimination problem with algebraic algorithms," *IEEE Trans. Power Electron.*, vol. 39, no. 1, pp. 1437–1457, Jan. 2024, doi: 10.1109/TPEL.2023.3320583.
- [11] M. T. Yaqoob et al., "A review on harmonics elimination in real time for cascaded H-bridge multilevel inverter using particle swarm optimization," *Int. J. Power Electron. Drive Syst.*, vol. 12, no. 2, pp. 1216–1226, Jun. 2021, doi: 10.11591/ijpeds.v12.i2.pp1216-1226.
- [12] N. Riad et al., "Three-phase multilevel inverter using selective harmonic elimination with marine predator algorithm," *Electronics*, vol. 10, no. 4, p. 374, Feb. 2021, doi: 10.3390/electronics10040374.
- [13] M. Ali et al., "A review on harmonic elimination and mitigation techniques in power converter based systems," *Electr. Power Syst. Res.*, vol. 230, p. 110267, May 2024, doi: 10.1016/j.epsr.2024.110267.
- [14] Garg, V., Jangid, R., Jain, C., Sisodiya, M. "Performance Analysis of a PV-BESS-Grid Integrated Fast EV Charging System", *Journal of Emerging Technologies and Innovative Research (JETIR)*, Volume 12, Issue 6, 2025.
- [15] Sisodiya, M., Jangid, R., Jain, C., Garg, V. "Short-Term Load Forecasting (STLF) Using Machine Learning Models: A Comparison Based Study to Predict the Electrical Load Requirements", *International Journal of Technical Research & Science*. Volume X, Issue VI, June 2025. DOI Number: <https://doi.org/10.30780/IJTRS.V10.I06.007>
- [16] Sharma, S.S., Joshi, R.R., Jangid, R. et al. "Intelligent Techniques for Mitigation of Transient Over-Voltages in Gas Insulated Sub-Station and Effects of VFTO", *Journal of Critical Reviews*, Volume 7, Issue 14, pp. 3378-3392, 2020.
- [17] Bhatnagar, S., Jangid, R., et. al. "Modeling and Design of Maximum Power Point Tracking System Control Algorithm for PMSG Based Grid Connected Wind Power Generating Unit", *International Journal of Technical Research & Science*. Volume IV, Issue VII, July 2019. DOI Number: <https://doi.org/10.30780/IJTRS.V04.I07.002>
- [18] Verma, C., Jangid, R. "Smart Household Demand Response Scheduling with Renewable Energy Resources", *IEEE Third International Conference on Intelligent Computing and Control System (ICICCS-2019)*, Organized by Vaigai College of Engineering during May 15-17, 2019 at Madurai, India. (Scopus index) DOI: 10.1109/ICCS45141.2019.9065908.
- [19] Y. Joshi, J. K. Maherchandani, V. K. Yadav, R. Jangid, S. Vyas and S. S. Sharma, "Performance

Improvement of Standalone Battery Integrated Hybrid System," 2021 7th International Conference on Electrical Energy Systems (ICEES), Chennai, India, 2021, pp. 250-255, doi: 10.1109/ICEES51510.2021.9383636

[20] P. Kala et al., "An initial solution based selective harmonic elimination method for multilevel inverter," Comput. Electr. Eng., vol. 116, p. 109217, May 2024, doi: 10.1016/j.compeleceng.2024.109217.

[21] M. Khizer et al., "Selective harmonic elimination in a multilevel inverter using multi-criteria search enhanced firefly algorithm," IEEE Access, vol. 11, pp. 101060–101075, 2023, doi: 10.1109/ACCESS.2023.3315867.

[22] Sujit Kumar, Himani Paliwal, Shripati Vyas, Sasanka Sekhor, Vikramaditya Dave and Srawan Singh Rao. Dynamic Wireless Power Transfer in Electric Vehicles. 2021 J. Phys.: Conf. Ser. 1854. <https://doi.org/10.1088/1742-6596/1854/1/012014>

[23] et. al., S. V. . . (2021). Life Extension Of Transformer Mineral Oil Using AI-Based Strategy For Reduction Of Oxidative Products. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(11), 264–271. <https://doi.org/10.17762/turcomat.v12i11.5869>

[24] Tirole, R., Joshi, R.R., Yadav, V.K., Maherchandani, J.K. and Vyas, S. (2022). Intelligent Control Technique for Reduction of Converter Generated EMI in DG Environment. In Intelligent Renewable Energy Systems (eds N. Priyadarshi, A.K. Bhoi, S. Padmanaban, S. Balamurugan and J.B. Holm-Nielsen). <https://doi.org/10.1002/9781119786306.ch4>

[25] Chhipa, A.A., Vyas, S., Kumar, V., Joshi, R.R. (2021). Role of Power Electronics and Optimization Techniques in Renewable Energy Systems. In: Kumar, R., Singh, V.P., Mathur, A. (eds) Intelligent Algorithms for Analysis and Control of Dynamical Systems. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-15-8045-1_17

[26] A. Routray et al., "Harmonic reduction in hybrid cascaded multilevel inverter using modified grey wolf optimization," IEEE Trans. Ind. Appl., vol. 56, no. 2, pp. 1827–1838, Mar.–Apr. 2020, doi: 10.1109/TIA.2019.2952291.